Gleaning unexpected fruits from hard-won synthetases: probing principles of permissivity in non-canonical amino acid-tRNA synthetases.
نویسندگان
چکیده
The site-specific incorporation of non-canonical amino acids (ncAAs) into proteins is an important tool for understanding biological function. Traditionally, each new ncAA targeted for incorporation requires a resource-consuming process of generating new ncAA aminoacyl tRNA synthetase/tRNACUA pairs. However, the discovery that some tRNA synthetases are "permissive", in that they can incorporate multiple ncAAs, means that it is no longer always necessary to develop a new synthetase for each newly desired ncAA. Developing a better understanding of what factors make ncAA synthetases more permissive would increase the utility of this new approach. Here, we characterized two synthetases selected for the same ncAA that have markedly different "permissivity profiles." Remarkably, the more permissive synthetase incorporated an ncAA for which we had not been able to generate a synthetase through de novo selection methods. Crystal structures revealed that the two synthetases recognize their parent ncAA through a conserved core of interactions, with the more permissive synthetase displaying a greater degree of flexibility in its interaction geometries. We also observed that intraprotein interactions not directly involved in ncAA binding can play a crucial role in synthetase permissivity and suggest that optimization of such interactions might provide an avenue to engineering synthetases with enhanced permissivity.
منابع مشابه
Essentiality Assessment of Cysteinyl and Lysyl-tRNA Synthetases of Mycobacterium smegmatis
Discovery of mupirocin, an antibiotic that targets isoleucyl-tRNA synthetase, established aminoacyl-tRNA synthetase as an attractive target for the discovery of novel antibacterial agents. Despite a high degree of similarity between the bacterial and human aminoacyl-tRNA synthetases, the selectivity observed with mupirocin triggered the possibility of targeting other aminoacyl-tRNA synthetases ...
متن کاملThe genetic incorporation of thirteen novel non-canonical amino acids.
Thirteen novel non-canonical amino acids were synthesized and tested for suppression of an amber codon using a mutant pyrrolysyl-tRNA synthetase-tRNA(Pyl)(CUA) pair. Suppression was observed with varied efficiencies. One non-canonical amino acid in particular contains an azide that can be applied for site-selective protein labeling.
متن کاملThe bi-pyramidal nature, the Lucas series in the genetic code and their relation to aminoacyl-tRNA synthetases
It has been unclear what principle governs the selection of the 20 canonical amino acids in the genetic code. Based on a previous study of the 28-gonal and rotational symmetric arrangement of the 20 amino acids in the genetic code, new analyses of the organization of the genetic code system together with their relation to the two classes of aminoacyl-tRNA synthetases are reported in this work. ...
متن کاملPre-transfer Editing of Serine Hydroxamate within the Active Site of Methanogenic-type Seryl-tRNA Synthetase
Aminoacyl-tRNA synthetases (aaRSs) maintain fidelity of protein synthesis by matching only cognate amino acid-tRNA pairs. Aminoacylation occurs through activation of amino acid to yield aminoacyl-adenylate followed by transfer of acyl-moiety to tRNA. Error-prone aaRSs achieve high level of accuracy using inherent hydrolytic activities towards noncognate aminoacyl-adenylate or misacylated tRNA (...
متن کاملSeryl-tRNA Synthetases in Translation and Beyond
For a long time seryl-tRNA synthetases (SerRSs) stood as an archetypal, canonical aminoacyl-tRNA synthetases (aaRS), exhibiting only basic tRNA aminoacylation activity and with no moonlighting functions beyond protein biosynthesis. The picture has changed substantially in recent years after the discovery that SerRSs play an important role in antibiotic production and resistance and act as a reg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chembiochem : a European journal of chemical biology
دوره 15 12 شماره
صفحات -
تاریخ انتشار 2014